
NAS Technical Report; NAS-06-008
July 2006

 1

A Scalability Study of SGI Clustered XFS Using HDF Based AMR Application

Subhash Saini, Dale Talcott, Herbert Yeung, George Myers, and Robert Ciotti

Terascale Systems Group
NASA Ames Research Center

Moffett Field, California 94035-1000, USA
{ssaini, dtalcott, hyeung, gmyers, ciotti}@mail.arc.nasa.gov

Abstract: Many large-scale parallel scientific and engineering applications, especially climate modeling, often
run for lengthy periods and require data checkpointing periodically to save the state of the computation for a
program restart. In addition, such applications need to write data to disks for post-processing, e.g., visualization.
Both these scenarios involve a write-only pattern using Hierarchal Data Format (HDF) files. In this paper, we
study the scalability of CXFS by HDF based Structured Adaptive Mesh Refinement (AMR) application for three
different block sizes. The code used is a block-structured AMR hydrodynamics code that solves compressible,
reactive hydrodynamic equations and characterizes physics and mathematical algorithms used in studying nuclear
flashes on neutron stars and white dwarfs. The computational domain is divided into blocks distributed across the
processors. Typically, a block contains 8 zones in each coordinate direction (x, y, and z) and a perimeter of guard
cells (in this case, 4 zones deep) to hold information from the neighbors. We used three different block sizes of
8x8x8, 16x16x16, and 32x32x32. Results of parallel I/O bandwidths (checkpoint file and two plot files) are
presented for all three-block sizes on a wide range of processor counts, ranging from 1 to 508 processors of the
Columbia system.

Key words: parallel I/O, clustered file system (CXFS), benchmarking, performance evaluation, HDF5, adaptive
mesh refinement, AMR.

1 Introduction

NASA’s many large-scale parallel scientific and
engineering applications often run for lengthy
periods and require data checkpointing periodically
to save the state of the computation for a program
restart. These applications include climate modeling
applications such as the Goddard Earth Observing
System 4/5 Global Climate Model (GEOS-4/5
GCM) from the Global Modeling and Assimilation
Office (GMAO), located at NASA Goddard Space
Flight Center (GSFC) [1], and Weather Research
Forecasting (WRF) codes [2]. In addition, such
applications need to write data to disks for post-
processing, for example, for visualization. Both
these scenarios involve a write-only pattern using
Hierarchical Data Format (HDF) files [3]. Each
GEOS-4/5 file contains a single HDF-EOS grid,
which in turn includes a number of geophysical
variables. Some files contain 2-D variables on a
longitude/latitude grid and some files contain 3-D
variables on the same longitude/latitude grid but
with an additional vertical dimension.

Recently, NASA, under its new National Leadership
Computing System (NLCS) initiative chartered to
provide resources to computationally intensive
research projects in the national interest, has
awarded a million hours of compute time on the
Columbia system to Dr. Greg Holland and his team
at the National Center for Atmospheric Research
(NCAR), They will run the WRF code to simulate
weather at high, cloud-resolving resolution to
determine how moist convection impacts natural
climate change, such as hurricane frequency and
intensity [4]. This will provide an understanding of
future hurricane impacts, leading to much improved
understanding of how climate both influences, and
is influenced by, human activities. The WRF code
involves massive I/O of about 6.5 terabytes (TB)
that can be accessed via either sequential or parallel
HDF. Also, the National Science Foundation (NSF)
and the Department of Defense (DoD) High
Performance Computing Modernization Office
(HPCMO) have adopted a benchmark version of
WRF for testing future generation of petaflops-class

NAS Technical Report; NAS-06-008
July 2006

 2

computing systems [5]. WRF will be run in the
2,048-processor shared-memory Columbia
supercomputer environment, located at the NASA
Advanced Supercomputing (NAS) facility at Ames
Research Center under the Shared Capability Assets
Program (SCAP), which funds the High-End
Computing Columbia Project.

In both the GEOS-4/5 and WRF codes, the
performance bottleneck is in the I/O. Therefore, it is
important to understand the I/O characteristics of
modern supercomputers such as Columbia and look
for ways to improve I/O performance.

To get a better understanding of how the I/O
systems of one of today’s leading supercomputers
perform, we undertook a study to benchmark the
parallel I/O performance of NASA's Columbia
supercomputer. In particular, we characterize the
parallel I/O performance and scalability of SGI’s
CXFS (Clustered XFS) file system [6] on Columbia
running an HDF-based Structured Adaptive Mesh
Refinement (AMR) application for three different
block sizes.

The rest of this paper is organized as follows. In
Section 2, we present the architectural details of
Columbia and its file system. In Section 3, we
describe the HDF-based AMR application used in
this study. In Section 4, we present and analyze the
results of the benchmarking study. We conclude in
Section 5 with a discussion of future work.

2 An Overview of Columbia
2.1 Columbia Architecture

Columbia consists of twenty 512-processor SGI
Altix computers. Twelve of these are model 3700,
and eight are model BX2. Because the experiments
in this paper were conducted on BX2 systems, we’ll
confine our discussion to that architecture.

In the SGI 3700 BX2 system, eight Intel Itanium 2
processors are grouped together in a brick, called a
C–brick, which is connected by a NUMALink4
interconnect to another C-brick. Each pair of
processors shares a peak bandwidth of 3.2 gigabytes
per second (GB/s). Peak bandwidth between nodes
is 1.6 GB/s [7-11].

The SGI Altix is a Cache Coherent - Non-Uniform
Memory Access (CC-NUMA) system. Local cache-
coherency is used to maintain the cache coherency

between processors on the Front Side Bus (FSB).
Global cache coherency protocol is implemented by
the Scalable Hub (SHUB) chip and is a refinement
of the protocol used in the DASH computing system
developed at Stanford University, which is directory
based. The advantage of the directory-based cache–
coherent protocol is that only the processors that are
playing an active role in the usage of a given cache
line need to be informed about an operation. This
reduces the flow of information, at the cost of using
about 3 percent of memory space for the directory.

The combination of compute processors, memory,
SHUBs, and R-brick constitute the interconnect
fabric called NUMALink. The SHUB is a
proprietary Application Specific Integrated Circuit
(ASIC) designed by SGI and fabricated by IBM,
which handles the functions including: (a) global
cache coherency protocol; (b) memory controller for
the local memory on the node; (c) interface to I/O
subsystem; (d) interface to the interconnection
network with other nodes; and (e) globally
synchronized high-resolution clock. The SGI Altix
3700 BX2 uses NUMALink4, a high-performance
network with fat-tree network topology. In fat-tree
network topology, the bisection bandwidth scales
linearly with the number of processors.

Each Altix has globally shared memory. It is a
single-system image (SSI) design, which means that
a single memory address space is visible to all the
computing system resources. SSI is achieved
through the NUMALink memory interconnect. It is
a Non-Uniform Memory Access Flexible
(NUMAflex) system as scaling can be done in three
dimensions, namely the number of processors, the
memory capacity, and the I/O capacity. This
NUMAflex architecture supports up to 2048 Intel
Itanium 2 processors and four TB of memory.

At NAS, four of the BX2s are organized as a
capability platform by interconnecting with three
networks – (a) NUMALink4, (b) InfiniBand, and (c)
10 Gb Ethernet [13, 16, 18]. The InfiniBand and
Ethernet interconnects connect to the other 16
boxes, as well [12-15].

2.2 File System on Columbia

In the past, the 20 Altix machines of Columbia
accessed a shared Network File System (NFS)
containing the users’ home directories. Due to the
relatively poor performance of NFS file systems,

NAS Technical Report; NAS-06-008
July 2006

 3

each of the machines also had a local XFS-based
scratch disk (/nobackupi, where i=1, 2, 3, …, 20),
and users employ these scratch disks for their
performance-sensitive I/O. However, this
configuration was not conducive to efficient use of
the Columbia system. For example, if users of host
Columbia5 wanted to run an application on
Columbia9, they had to ensure that files accessed by
their application on /nobackup5 also existed on
/nobackup9. In addition, the design of the NFS file
system is to provide distributed access to files from
multiple hosts, and its consistency semantics and
caching behavior are, accordingly, designed for such
access. A typical scientific-computing workload
does not mesh well with the semantics of NFS,
especially for concurrent writes. Therefore, in
February 2006, the Columbia system was
reconfigured to take advantage of SGI’s Clustered
XFS (CXFS) technology, which overcomes the
problems associated with NFS and permits a more
efficient shared file system.

With CXFS, the metadata about files is still
managed by shared servers, but each host has direct
access via Fibre Channel to the file data disks. In the
systems under test (nodes C17-20), each host
communicates with its domain’s three metadata
servers via gigabit Ethernet. The file system data
blocks are accessed across four 4-Gb/s, Fibre
Channel connections to dual, 2-Gb/s RAID
controllers, each with 2.5 GB of cache, interfacing
with 30 TB of disk space striped across 8 logical
unit numbers (LUNs) of 8+1 RAID-3 [3]. Figure 1
shows the configuration as it will be when the
controllers are upgraded to larger, 4-Gb/s models.
The configuration under test was midway through
an upgrade from 2 Gb/s Fibre Channel to 4 Gb/s. In
particular, the disk controllers were still only 2 Gb/s.

3 Application Used
We have used an HDF5-based application to study
the scalability and performance characterization of
CXFS on Columbia. We describe HDF5 and the
application below.

3.1 HDF5 Interface

HDF5 is an I/O library from the National Center for
Supercomputing Applications (NCSA). HDF5 is a
de facto standard in the scientific and engineering
community including the NASA Earth Observing

System project of the NASA Earth Observatory. Its
data model consists of hierarchical data organization
in a single file, typed multidimensional array
storage, and attributes on datasets. Its features
include C, C++, and Fortran interfaces; portable
data format, optional compression (not in a parallel
I/O mode); data reordering (chunking) and
noncontiguous I/O (memory and file with
hyperslabs). Within a dataset space, subsets may be
selected when non-contiguous data access is
required. These dataspace subsets are referred to as
hyperslabs. In many aspects, these subsets are
similar to MPI derived datatypes.

Figure 1: The Columbia 2048 cluster’s CXFS I/O
configuration (future).

The HDF5 files consist of groups, datasets, and
attributes. Groups are like directories, holding other
groups and datasets. Datasets hold arrays of typed
data, where a datatype describes the type and a
dataspace gives the dimensions of the array.
Datatypes can be atomic (integers, floats, and
others) or compound like structures of C. Attributes
are small datasets associated with the file, group, or
another datasets. They have a datatype and
dataspace and can only be accessed as unit.

HDF5 is a bit different from previous HDF releases
such HDF4. Differences include: (a) Support for
files greater than 2 GB in size, even on 32-bit

NAS Technical Report; NAS-06-008
July 2006

 4

platforms (as long as they conform to the LFS
conventions); (b) much simpler set of objects,
consisting of multidimensional arrays of data
elements and grouping objects; and (c) support for
threading and parallel I/O using MPI-IO.

The HDF5 API provides a property list that is an
object containing properties of HDF5 files,
including on-disk layout, chunking sizes, filters, a
list of external HDF5 files to be “mounted” as part
of the HDF5 file system within a file, and
interactions with underlying I/O systems (e.g. MPI-
IO). As different high-end computing systems vary
a great deal in how they handle I/O, the selection of
properties often depends on which computing
systems is being used.

3.2 FLASH Application

Massive stars more than ten times the mass of our
Sun evolve for millions of years and then die in a
matter of hours in stellar explosions known as core
collapse supernovae. Such supernovae are one of
only two classes of supernovae in the universe. Core
collapse supernovae are neutrino driven, whereas
“Type Ia” supernovae occur via thermonuclear
runaway and mark the death throes of less massive
stars known as white dwarfs. Type Ia supernovae
are the brightest thermonuclear explosions in the
universe. The explosion begins when a few hot
spots near the center of the white dwarf experience a
runaway in their nuclear energy generation. An
unstable front of turbulent combustion speeds
through the star, turning most of it into iron, and
blowing it apart. A first-principles understanding of
these explosions eluded astrophysicists for decades.
Using Columbia, researchers from the University of
California, Santa Cruz, and Lawrence Berkeley
National Laboratory have simulated nuclear fusion
flames for enough time to see its turbulent structure
develop.

The FLASH application [9] is a parallel code
written in Fortran 90 using the MPI paradigm. It
solves compressible, reactive hydrodynamic
equations using adaptive mesh refinement (AMR) to
study the problems of nuclear flashes on the
surfaces of neutron stars and white dwarves, in
particular X-ray bursts, type Ia supernovae, and
classical novae. Algorithms used in the FLASH
code are parallel adaptive mesh refinement with
PARAMESH [10], compressible hydrodynamics

with PROMETHEUS, a stellar EOS, and nuclear
burning. PARAMESH is a package of FORTRAN
90 subroutines designed to provide an application
developer with an easy route to extend an existing
serial code that uses a logically Cartesian structured
mesh into a parallel code with AMR. PARAMESH
falls into a class of AMR techniques known as
block-structured AMR. The computing paradigm
that PARAMESH uses is single program multiple
data (SPMD); that is, the same code executes on all
the processors but the local data content modifies
the program flow on each processor. The
computational domain is divided into blocks of
dimension 8x8x8, 16x16x16, and so on. Each block
has a perimeter of four guard cells to hold the state
variables of the neighboring blocks. Block hierarchy
is managed by an oct-tree method, and load
balancing is performed by a weighted space filling
curve through the blocks, which produces a one
dimensional ordering of blocks.

FLASH I/O is a smaller version of the FLASH code
that simply mimics FLASH’s I/O patterns. The data
domain is divided into blocks distributed across the
processors. The benchmark uses the parallel HDF5
library for data I/O. It produces three output files:
(a) a checkpoint file, (b) a plot file for centered data,
and (c) a plot file for corner data. These three output
files are very different: the checkpoint file is large
and dense, whereas the two plot files are smaller and
sparse. The checkpoint file stores all the data
variables (excluding the guard cells), the tree
structure, and some additional data including the
current simulation time, current time step and the
number of steps. A total of 24 separate I/O
operations are performed during checkpointing, one
for each variable (pressure, velocity, density,
energy, entropy, free energy, etc). Plot files (with
and without corners) have the same format as
checkpoint files but with fewer variables and half
the precision (four bytes vs. eight in the checkpoint
file).

4 Results
In this section we present the results of our parallel
I/O experiments on performance characterization
and scalability of SGI CXFS on SGI Altix BX2.

The plot in Figure 2 shows the size of checkpoint
files for three block sizes – 8x8x8, 16x16x16, and
32x32x32. Here, we notice that the file with blocks

NAS Technical Report; NAS-06-008
July 2006

 5

of 32x32x32 is about eight times the size the file
with block size 16x16x16, which in turn is about
sixteen times the size of the file with 8x8x8 blocks.

File Size of Checkpoint File for 3 Cases

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1 10 100 1000

Number of Processors

C
h

e
c
k
p

o
in

t
F
il

e
 S

iz
e
 (

M
B

)

Case 8 x 8 x 8

Case 16 x 16 x 16

Case 32 x 32 x 32

Figure 2: Size of checkpoint file for three
different block sizes.

Figure 3 shows the size of a plot file with no corners
for three block sizes – 8x8x8, 16x16x16, and
32x32x32. Here, we notice that the file with block
size 32x32x32 is a little more than seven times the
size the file blocked 16x16x16, which in turn is
slightly less than seventeen times the size of the file
blocked 8x8x8.

Size of Plotfile With No Corners for 3 Cases

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1 10 100 1000

Number of Processors

F
il
e
 S

iz
e
 (

M
B

)

Case 8 x 8 x 8

Case 16 x 16 x 16

Case 32 x 32 x 32

Figure 3: Size of plot file with no corners size for
three different block sizes.

Figure 4 shows the size of a plot file with corners
for three block sizes–8x8x8, 16x16x16 and
32x32x32. Here, the file with block size 32x32x32
is slightly less than seven times the size the file with
blocks of 16x16x16, which in turn is about fourteen
times the size of the file blocked 8x8x8.

Figure 4: Size of plot file with corners size for
three different block sizes.

To see the relative sizes of a checkpoint file, a plot
file with no corners, and a plot file with corners, we
have plotted these files for block size 16x16x16,
shown in Figure 5. The checkpoint files are an order
of magnitude larger than both plot files. Also, plot
files with corners are slightly larger than the plot
files with no corners.

Figure 5: Size of checkpoint file and plot files
with corner and no corner for a block size of
16x16x16.

Figure 6 plots the bandwidth writing checkpoint
files and plot files with corners and no corners for a
block size of 8x8x8 on varying number of
processors. In the entire range of processors from 1
to 508, the I/O bandwidth to the checkpoint file is
higher than the plot file with corners, and that in
turn is higher than the plot file without corners. For
all the three files, bandwidth increases from 1
processor to 16 processors—at which bandwidth is
highest—and then decreases gradually. From 384 to
508 processors, they are very close to each other.

NAS Technical Report; NAS-06-008
July 2006

 6

I/O Bandwidth for Case 8 x 8 x 8

0

20

40

60

80

100

120

140

160

180

0 64 128 192 256 320 384 448 512

Number of Processors

I
/

O
 B

a
n

d
w

id
t
b

 (
M

B
/

s
)

Checkpoint

Plot without

corners

Plot with corners

Figure 6: I/O bandwidth of checkpoint and plot files
for varying number of processors for block size of
8x8x8.
The plot in Figure 7 shows bandwidth writing the
checkpoint file and plot files with corners and no
corners for a block size of 16x16x16 on varying
number of processors. For all three files, I/O
bandwidth increases from 1 processor to 32
processors, after which it starts decreasing. From 64
processors to 256 processors, bandwidth to all three
files gradually decreases—checkpoint is higher than
the plot file with corners, which is in turn higher
than the plot file with no corners. From 256
processors to 508 processors, bandwidth to all three
files continues decreasing, with bandwidth to the
checkpoint file higher than bandwidth to both of the
plot files, which are almost the same.

Figure 7: I/O bandwidth of checkpoint and plot files
for varying number of processors for block size of
16x16x16.
Figure 8 shows the write bandwidth to the
checkpoint file and plot files with corners and no
corners for a block size of 32x32x32 on varying
number of processors. I/O bandwidth to the

checkpoint file increases from 1 to 4 processors and
then starts decreasing. Bandwidth to both plot files
increases from 1 processor to 8 processors. Here,
results are reported only up to 128 processors
because the benchmark could not run on 256, 384,
and 508 processors due to a limited disk quota (400
GB) for the researchers. Trends in this figure are
quite different from those of figures 6 and 7. Unlike
figures 6 and 7, in the processors range from 32 to
128, bandwidth to the plot file without corners is
higher than bandwidth to the checkpoint and the plot
file with corners.

I/O Bandwidth for Case 32 x 32 x 32

0

50

100

150

200

250

300

0 16 32 48 64 80 96 112 128

Number of Processors

I
/

O
 B

a
n

d
w

id
th

 (
M

B
/

s
)

Checkpoint

Plot without corners

Plot with corners

Figure 8: I/O bandwidth of checkpoint and plot files
for varying number of processors on SGI Altix BX2
for block size of 32x32x32.
In Figure 9 we plot the data from figures 6 – 8 for
just the checkpoint files. The I/O bandwidth for
block sizes 32x32x32, 16x16x16, and 8x8x8
becomes maximum at 271 megabytes per second
(MB/s) on 4 processors, 255 MB/s on 32 processors;
and 152 MB/s on 16 processors, respectively. After
achieving maximum, bandwidth for all three block
sizes gradually decreases as the number of
processors increases.

NAS Technical Report; NAS-06-008
July 2006

 7

Figure 9: I/O bandwidth of checkpoint file for three
block sizes on SGI Altix BX2 for various processors.

Figure 10 shows the I/O bandwidth to a plot file
without corners for three block sizes of 8x8x8,
16x16x16, and 32x32x32. For both 16x16x16 and
32x32x32 the bandwidth becomes maximum at 252
MB/s on 32 processors. For block size 8x8x8 it
becomes maximum at 88 MB/s on 16 processors.
After achieving maximum, bandwidth for all three
block sizes decreases as the number of processors
increases. Where data for the 32x32x32 case are
available, it has the best bandwidth except for 16
and 32 processors, where 16x16x16 is slightly
better. The bandwidth for block size 16x16x16 is
much higher than that of block size 8x8x8.

Figure 10: I/O bandwidth of plot file without
corners for three block sizes on SGI Altix BX2
for various processors.

In Figure 11, the corresponding data for plot files
with corners is shown. I/O bandwidth for block
sizes of 8x8x8 becomes maximum at 113 MB/s on
16 processors; for block size 16x16x16 it becomes
maximum at 293 MB/s on 32 processors; for block
size 32x32x32 it becomes maximum at 263 MB/s on
8 processors. After achieving maximum, bandwidth

for all three block sizes gradually decreases as the
number of processors increases. Again, results for
block size 32x32x32 are available only up to 128
processors due to limited disk space. For plot file
with corners, the 16x16x16 case achieves higher
bandwidth than the 32x32x32 case up to 128
processors. From all processor counts, bandwidth
for block size 16x16x16 is much higher than that of
block size 8x8x8.

In Figure 12 is plotted the average I/O bandwidth
for three block sizes on SGI Altix BX2 for
processors 1 to 128. Here average means average
bandwidths of checkpoint file, plot file without
corners and plot file with corners.

Figure 11: I/O bandwidth of plot file with corners for
three block sizes for various processors.

For block size of 8x8x8, bandwidth achieves highest
value of 117 MB/s at 16 processors. For block size
of 16x16x16, bandwidth achieves highest value of
268 MB/s at 32 processors. For block size of
32x32x32, bandwidth achieves highest value of 237
MB/s at 8 processors. From 32 to 128 processors,
average bandwidth for all the three block sizes
decrease gradually. At 128 processors, average I/O
bandwidth for block sizes 16x16x16 and 32x32x32
become almost same.

NAS Technical Report; NAS-06-008
July 2006

 8

Average I/O Bandwidth for 3 Cases

0

50

100

150

200

250

300

0 16 32 48 64 80 96 112 128

Number of Processors

 I
/

O
 B

a
n

d
w

id
t
h

 (
M

B
/

s
)

Case 8 x 8 x 8

Case 16 x 16 x 16

Case 32 x 32 x 32

Figure 12: Average I/O bandwidth for three
block sizes on SGI Altix BX2 for processors 1 to
128.

Figure 13 is same as figure 12 but extended to 508
processors. From processors 128 to 508, average I/O
bandwidth for both the block sizes 8x8x8 and
16x16x16 decreases gradually, with bandwidth for
block size 16x16x16 being higher. The difference
decreases as the number of processors increases, and
finally at 508 processors, the difference between the
two becomes very small.

Figure 13: Average I/O bandwidth for three block
sizes on the SGI Altix BX2 for processors 1 to 508.

5 Analysis and Conclusions
We ran the benchmark with a configured maximum
of 500 blocks per processor. The number of blocks
assigned per processor depends on the number of
zones in x, y, and z direction. For a block size of
8x8x8, the number of blocks computed by the
algorithm is 80. Now, the size of each record from a
single processor in the 8x8x8 case is (8 bytes per
variable) * (8 zones in x) * (8 zones in y) * (8 zones

in z) * 80 blocks giving 327,680 bytes per variable.
Multiplying by 24 variables yields 7,864,320 bytes.
HDF5 adds a little overhead but the result is a
checkpoint file size of about 7.6 mebibytes (220
bytes) (MiB) per processor.

A similar analysis can be performed for the
16x16x16 case, except that the number of blocks per
processor increases to 160 and the zones double in
each dimension. The result is a record size of 2.5
MiB and a file size of about 121 MiB per processor.

For the 32x32x32 case, the number of blocks per
processor remains at 160 and the number of zones
doubles again. The result is about 20.6 MiB per
record and 961 MiB per processor.

Examining figures 6-12, it is clear these data rates
are quite poor. The theoretical bandwidth limit
should be (4 data paths) * (2 Gb/s data rate), or
about 1 GB/s. Other I/O benchmarks have attained
values near this maximum. A large part of the
problem is that Columbia’s CXFS is configured
with a stripe size of 1 MiB. From the preceding
analysis of file sizes, we see the record size is only
about 320 kibibyte (210 bytes) (KiB) for the 8x8x8
checkpoint file. It is even less for the plot files. The
8x8x8 case is uniformly the slowest. The 16x16x16
and 32x32x32 record sizes are both greater than the
stripe size, but there is no guarantee the I/O records
are aligned to stripe boundaries. At very low
processor counts, the 20 MiB 32x32x32 records
seem to have an advantage over the 2.5 MiB
16x16x16 records. Very quickly though, as the
processor counts increase, the more moderately
sized 16x16x16 records emerge as the winner.

At larger processor counts, it is apparent the
processes interfere with each other, but it is unclear
how much of this interference is due to the HDF5
layer, and how much to the system I/O layer.
Results of unpublished benchmarks, not using
HDF5, show a less steep drop-off in output and a
higher bandwidth at large process counts [19]. The
function HDF5write() in HDF5 has two operations –
(a) gather variables from memory and (b) scatter
these variables into the file. Probably, low
performance of HDF5 is due to inefficient
implementation of the gather and scatter functions.

NAS Technical Report; NAS-06-008
July 2006

 9

6 References
[1] Global Modeling and Assimilation Office,

http://gmao.gsfc.nasa.gov/, (2006).

[2] The Weather Research and Forecasting (WRF)
Model, http://www.wrf-model.org/index.php,
(2006).

[3] HDF5, http://hdf.ncsa.uiuc.edu/HDF5/, (2006).

[4] The National Center for Atmospheric Research
(NCAR), http://www.ncar.ucar.edu/, (2006).

[5] WRF, http://www.nsf.gov/, (2006).

[6] CXFS,
http://www.sgi.com/products/storage/tech/file_s
ystems.html.

 [7] S. Saini Hot Chips and Hot Interconnects for
High End Computing Systems, M4, IEEE SC
2004, Pittsburgh, (2004).

[8] S. Saini, Performance Comparison of Columbia
2048 and IBM Blue Gene/L, SGIUG 2005
Technical Conference and Tutorials, June 13-
16, 2005 - Munich, (2005).

[9] B. Fryxell, K. Olson, P. Ricker, F. X.
Timmes,M. Zingale, D. Q. Lamb, P.
MacNeice, R. Rosner, J. W. Truran, and H.
Tufo, FLASH: An Adaptive Mesh
Hydrodynamics Code for Modeling
Astrophysical Thermonuclear Flashes, The
Astrophysical Journal Supplement Series,
131:273-334, (2000).

[10] MacNeice, P., Olson, K. M., Mobarry, C., de
Fainchtein, R., & Packer, C., PARAMESH: A
parallel adaptive mesh refinement community
toolkit,, Comput. Phys. Commun., 126, 330,
(2000)

[11] S. A. Jarvis, D. P. Spooner, H. N. Lim, C.
Keung, J. Cao, S. Saini, and G. R. Nudd,
Performance Prediction and its Use in Parallel
and Distributed Computing Systems, Future
Generation Computer Systems special issue on
System Performance Analysis and Evaluation,
(in press) (2006).

[12] S. Saini, R. Ciotti, T. N. Gunney, T. E. Spelce,
A. Koniges, D. Dossa, P. Adamidis, R.
Rabenseifner, S. R. Tiyyagura, M. Mueller,
Rod Fatoohi, Performance Evaluation of

Supercomputers using HPCC and IMB
Benchmarks IPDPS 2006, PMEO, April 25-29,
Rhodes, Greece (2006).

[13] S. Saini and R. Fatoohi, and R. Ciotti,
Interconnect Performance Evaluation of SGI
Altix 3700 BX2 Cray X1, Cray Opteron
Cluster, and Dell PowerEdge, IPDPS 2006,
PMEO, April 25-29, Rhodes, Greece, (2006).

[14] S. Saini, R. Ciotti, T. N. Gunney, T. E. Spelce,
A. Koniges, D. Dossa, P. Adamidis, R.
Rabenseifner, S. R. Tiyyagura, M. Mueller,
Rod Fatoohi, Performance Comparison of Cray
X1 and Cray Opteron Cluster with Other
Leading Platforms Using HPCC and IMB
Benchmarks, CUG 2006, May 8-11, 2006
Lugano, Switzerland, (2006).

[15] S. Saini, P. Adamidis, R. Fatoohi,; J. Chang
and R. Ciotti, Performance Analysis of Cray
X1 and Cray Opteron Cluster, CUG 2006, May
8-11, 2006 Lugano, Switzerland, (2006).

[16] B. B. Karki, V. Yerraguntla, H. Kikuchi, and S.
Saini A Parallel Molecular Dynamics
Algorithm for Polycrystalline Minerals, The
2005 International MultiConference in
Computer Science & Computer Engineering
Las Vegas, Nevada, USA, June 27-30, 2005
MSV 2005: 201-207, (20050

[17] R. Biswas, M. J. Djomehri, R. Hood, H. Jin, C.
Kiris, and S. Saini An Application-Based
Performance Characterization of the Columbia
Supercluster, , IEEE/ACM SC 2005: 26,
(2006).

[18] S. Saini, R. Biswas, S. Gavali, H. Jin, D. C.
Jespersen, M. J. Djomehri, and N. Madavan,
NAS Experience with the Cray X1, CUG 2005,
May 16-19, Albuquerque, New Mexico, USA,
(2006).

 [19] S. Saini and D. Talcott, Unpublished, (2006).

